- Information
- Symbol: OsMYB2P-1
- MSU: LOC_Os05g04820
- RAPdb: Os05g0140100
- PSP score
- LOC_Os05g04820.1: 0.8568
- PLAAC score
- LOC_Os05g04820.1: 0
- pLDDT score
- 57.04
- Protein Structure from AlphaFold and UniProt
- Publication
-
Genbank accession number
- Key message
- Furthermore, primary roots of OsMYB2P-1-overexpressing plants were shorter than those in wild-type plants under Pi-sufficient conditions, while primary roots and adventitious roots of OsMYB2P-1-overexpressing plants were longer than those of wild-type plants under Pi-deficient conditions
- These results suggest that OsMYB2P-1 may also be associated with the regulation of root system architecture
- OsMYB2P-1, an R2R3 MYB transcription factor, is involved in the regulation of phosphate-starvation responses and root architecture in rice
- An R2R3 MYB transcription factor, OsMYB2P-1, was identified from microarray data by monitoring the expression profile of rice (Oryza sativa ssp
- Moreover, expression of OsPT2, which encodes a low-affinity Pi transporter, was up-regulated in OsMYB2P-1-overexpressing plants under Pi-sufficient conditions, whereas expression of the high-affinity Pi transporters OsPT6, OsPT8, and OsPT10 was up-regulated by overexpression of OsMYB2P-1 under Pi-deficient conditions, suggesting that OsMYB2P-1 may act as a Pi-dependent regulator in controlling the expression of Pi transporters
- Expression of OsMYB2P-1 was induced by Pi starvation
- Overexpression of OsMYB2P-1 in Arabidopsis (Arabidopsis thaliana) and rice enhanced tolerance to Pi starvation, while suppression of OsMYB2P-1 by RNA interference in rice rendered the transgenic rice more sensitive to Pi deficiency
- These findings demonstrate that OsMYB2P-1 is a novel R2R3 MYB transcriptional factor associated with Pi starvation signaling in rice
- Connection
- OsMYB2P-1, OsPht1;10~OsPT10, OsMYB2P-1, an R2R3 MYB transcription factor, is involved in the regulation of phosphate-starvation responses and root architecture in rice, Moreover, expression of OsPT2, which encodes a low-affinity Pi transporter, was up-regulated in OsMYB2P-1-overexpressing plants under Pi-sufficient conditions, whereas expression of the high-affinity Pi transporters OsPT6, OsPT8, and OsPT10 was up-regulated by overexpression of OsMYB2P-1 under Pi-deficient conditions, suggesting that OsMYB2P-1 may act as a Pi-dependent regulator in controlling the expression of Pi transporters
- OsMYB2P-1, OsPht1;2~OsPT2, OsMYB2P-1, an R2R3 MYB transcription factor, is involved in the regulation of phosphate-starvation responses and root architecture in rice, Moreover, expression of OsPT2, which encodes a low-affinity Pi transporter, was up-regulated in OsMYB2P-1-overexpressing plants under Pi-sufficient conditions, whereas expression of the high-affinity Pi transporters OsPT6, OsPT8, and OsPT10 was up-regulated by overexpression of OsMYB2P-1 under Pi-deficient conditions, suggesting that OsMYB2P-1 may act as a Pi-dependent regulator in controlling the expression of Pi transporters
- OsIPS1, OsMYB2P-1, OsMYB2P-1, an R2R3 MYB transcription factor, is involved in the regulation of phosphate-starvation responses and root architecture in rice, Overexpression of OsMYB2P-1 led to greater expression of Pi-responsive genes such as Oryza sativa UDP-sulfoquinovose synthase, OsIPS1, OsPAP10, OsmiR399a, and OsmiR399j
- OsMYB2P-1, OsPht1;8~OsPT8, OsMYB2P-1, an R2R3 MYB transcription factor, is involved in the regulation of phosphate-starvation responses and root architecture in rice, Moreover, expression of OsPT2, which encodes a low-affinity Pi transporter, was up-regulated in OsMYB2P-1-overexpressing plants under Pi-sufficient conditions, whereas expression of the high-affinity Pi transporters OsPT6, OsPT8, and OsPT10 was up-regulated by overexpression of OsMYB2P-1 under Pi-deficient conditions, suggesting that OsMYB2P-1 may act as a Pi-dependent regulator in controlling the expression of Pi transporters
- OsLPT1~OsPht1;6~OsPT6, OsMYB2P-1, OsMYB2P-1, an R2R3 MYB transcription factor, is involved in the regulation of phosphate-starvation responses and root architecture in rice, Moreover, expression of OsPT2, which encodes a low-affinity Pi transporter, was up-regulated in OsMYB2P-1-overexpressing plants under Pi-sufficient conditions, whereas expression of the high-affinity Pi transporters OsPT6, OsPT8, and OsPT10 was up-regulated by overexpression of OsMYB2P-1 under Pi-deficient conditions, suggesting that OsMYB2P-1 may act as a Pi-dependent regulator in controlling the expression of Pi transporters
Prev Next